menu
How Dynamic Light Scattering Platforms Transform Molecular Research
Dynamic Light Scattering (DLS) represents one of the most valuable analytical techniques in modern science for characterizing particles in solution.
<p class="MsoNormal"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">Dynamic Light Scattering (DLS) represents one of the most valuable analytical techniques in modern science for characterizing particles in solution. This non-invasive method provides critical insights into particle size, molecular interactions, and solution dynamics&mdash;information essential across numerous scientific disciplines.</span></p><p class="MsoNormal"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">&nbsp;</span></p><p class="MsoNormal"><strong><span lang="EN-US" style="font-family: 'Times New Roman','serif';">The Physical Principles of DLS</span></strong></p><p class="MsoNormal"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">At its core, </span><span lang="EN-US"><a href="https://www.iaanalysis.com/dynamic-light-scattering-dls-platform.html"><span style="font-family: 'Times New Roman','serif';">Dynamic Light Scattering</span></a></span><span lang="EN-US" style="font-family: 'Times New Roman','serif';"> operates on a fundamental physical phenomenon: when light hits particles suspended in a liquid medium, the light scatters in various directions. Due to Brownian motion&mdash;the random movement of particles caused by collisions with solvent molecules&mdash;the distances between scattering particles constantly change.</span></p><p class="MsoNormal"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">&nbsp;</span></p><p class="MsoNormal"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">These changes create constructive and destructive interference patterns in the scattered light, causing intensity fluctuations that directly correlate with particle movement speed. Since smaller particles move more rapidly than larger ones (per the Stokes-Einstein relationship), analyzing these fluctuations using autocorrelation functions allows precise calculation of diffusion coefficients and, subsequently, hydrodynamic radii.</span></p><p class="MsoNormal"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">&nbsp;</span></p><p class="MsoNormal"><strong><span lang="EN-US" style="font-family: 'Times New Roman','serif';">Technical Capabilities and Limitations</span></strong></p><p class="MsoNormal"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">Modern DLS instruments typically operate with laser light sources and can measure particles ranging from approximately 0.5 nm to several micrometers. Key parameters commonly assessed include:</span></p><ul style="margin-top: 0cm;" type="disc"><li class="MsoNormal" style="mso-list: l3 level1 lfo1; tab-stops: list 36.0pt;"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">Hydrodynamic radius (the effective size of the particle including its hydration layer)</span></li><li class="MsoNormal" style="mso-list: l3 level1 lfo1; tab-stops: list 36.0pt;"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">Polydispersity index (a measure of size distribution homogeneity)</span></li><li class="MsoNormal" style="mso-list: l3 level1 lfo1; tab-stops: list 36.0pt;"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">Zeta potential (when equipped with appropriate modules)</span></li><li class="MsoNormal" style="mso-list: l3 level1 lfo1; tab-stops: list 36.0pt;"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">Estimates of molecular weight</span></li></ul><p class="MsoNormal" style="margin-left: 36.0pt;"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">&nbsp;</span></p><p class="MsoNormal"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">However, scientists should be aware of important limitations:</span></p><ul style="margin-top: 0cm;" type="disc"><li class="MsoNormal" style="mso-list: l0 level1 lfo2; tab-stops: list 36.0pt;"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">DLS provides intensity-weighted size distributions that bias toward larger particles</span></li><li class="MsoNormal" style="mso-list: l0 level1 lfo2; tab-stops: list 36.0pt;"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">Samples with extreme polydispersity may yield misleading results</span></li><li class="MsoNormal" style="mso-list: l0 level1 lfo2; tab-stops: list 36.0pt;"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">Measurements can be affected by dust contamination and sample concentration</span></li></ul><p class="MsoNormal" style="margin-left: 36.0pt;"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">&nbsp;</span></p><p class="MsoNormal"><strong><span lang="EN-US" style="font-family: 'Times New Roman','serif';">Applications Across Scientific Disciplines</span></strong></p><p class="MsoNormal"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">DLS finds application in numerous fields:</span></p><p class="MsoNormal"><strong><span lang="EN-US" style="font-family: 'Times New Roman','serif';">Protein Science</span></strong><span lang="EN-US" style="font-family: 'Times New Roman','serif';">: Monitoring protein aggregation, studying folding/unfolding dynamics, and assessing stability under various conditions.</span></p><p class="MsoNormal"><strong><span lang="EN-US" style="font-family: 'Times New Roman','serif';">Nanoparticle Research</span></strong><span lang="EN-US" style="font-family: 'Times New Roman','serif';">: Characterizing synthetic nanoparticles, establishing size distributions, and evaluating colloidal stability.</span></p><p class="MsoNormal"><strong><span lang="EN-US" style="font-family: 'Times New Roman','serif';">Pharmaceutical Development</span></strong><span lang="EN-US" style="font-family: 'Times New Roman','serif';">: Analyzing liposomes, polymeric nanoparticles, and drug delivery systems for size consistency and stability during storage.</span></p><p class="MsoNormal"><strong><span lang="EN-US" style="font-family: 'Times New Roman','serif';">Polymer Science</span></strong><span lang="EN-US" style="font-family: 'Times New Roman','serif';">: Determining the hydrodynamic radius of polymers in solution and studying their behavior under different solvent conditions.</span></p><p class="MsoNormal"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">&nbsp;</span></p><p class="MsoNormal"><strong><span lang="EN-US" style="font-family: 'Times New Roman','serif';">Methodological Considerations</span></strong></p><p class="MsoNormal"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">For reliable DLS measurements, researchers should consider:</span></p><ol style="margin-top: 0cm;" start="1" type="1"><li class="MsoNormal" style="mso-list: l2 level1 lfo3; tab-stops: list 36.0pt;"><strong><span lang="EN-US" style="font-family: 'Times New Roman','serif';">Sample Preparation</span></strong><span lang="EN-US" style="font-family: 'Times New Roman','serif';">: Filtration to remove dust, control of temperature and pH, and appropriate concentration ranges.</span></li><li class="MsoNormal" style="mso-list: l2 level1 lfo3; tab-stops: list 36.0pt;"><strong><span lang="EN-US" style="font-family: 'Times New Roman','serif';">Data Analysis</span></strong><span lang="EN-US" style="font-family: 'Times New Roman','serif';">: Understanding intensity vs. volume vs. number distributions, and appropriate statistical treatments.</span></li><li class="MsoNormal" style="mso-list: l2 level1 lfo3; tab-stops: list 36.0pt;"><strong><span lang="EN-US" style="font-family: 'Times New Roman','serif';">Complementary Techniques</span></strong><span lang="EN-US" style="font-family: 'Times New Roman','serif';">: Combining DLS with electron microscopy, analytical ultracentrifugation, or size-exclusion chromatography for comprehensive characterization.</span></li></ol><p class="MsoNormal" style="margin-left: 36.0pt;"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">&nbsp;</span></p><p class="MsoNormal"><strong><span lang="EN-US" style="font-family: 'Times New Roman','serif';">Recent Advances</span></strong></p><p class="MsoNormal"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">Recent technological developments have expanded DLS capabilities, including multi-angle DLS for improved resolution of polydisperse samples, coupling with other techniques for simultaneous measurements, and advances in data processing algorithms to extract more information from raw correlation data.</span></p><p class="MsoNormal"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">&nbsp;</span></p><p class="MsoNormal"><strong><span lang="EN-US" style="font-family: 'Times New Roman','serif';">Conclusion</span></strong></p><p class="MsoNormal"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">Dynamic Light Scattering represents an essential technology in the modern scientific toolkit, offering non-invasive, rapid, and detailed characterization of particles at the nanoscale. As nanoscience and biopharmaceutical research continue to advance, the importance of DLS services will only grow. Creative Proteomics' specialized DLS platform stands ready to support researchers in their quest to understand and harness the properties of matter at the nanoscale.</span></p><p class="MsoNormal"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">&nbsp;</span></p><p class="MsoNormal"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">By providing accurate, reliable data with minimal sample requirements, DLS services empower scientists to develop better therapeutics, materials, and analytical methods&mdash;ultimately accelerating innovation across multiple scientific disciplines.</span></p><p class="MsoNormal"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">&nbsp;</span></p><p class="MsoNormal"><strong><span lang="EN-US" style="font-family: 'Times New Roman','serif';">References</span></strong></p><ol style="margin-top: 0cm;" start="1" type="1"><li class="MsoNormal" style="mso-list: l1 level1 lfo4; tab-stops: list 36.0pt;"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">Sch&auml;rtl W. Light Scattering from Polymer Solutions and Nanoparticle Dispersions. Springer Laboratory; 2007. doi:10.1007/978-3-540-71951-9</span></li><li class="MsoNormal" style="mso-list: l1 level1 lfo4; tab-stops: list 36.0pt;"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">Bhattacharjee S. DLS and zeta potential - What they are and what they are not? Journal of Controlled Release. 2016;235:337-351. doi:10.1016/j.jconrel.2016.06.017</span></li><li class="MsoNormal" style="mso-list: l1 level1 lfo4; tab-stops: list 36.0pt;"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">Minton AP. Recent applications of light scattering measurement in the biological and biopharmaceutical sciences. Analytical Biochemistry. 2016;501:4-22. doi:10.1016/j.ab.2016.02.007</span></li></ol><p class="MsoNormal"><span lang="EN-US" style="font-family: 'Times New Roman','serif';">&nbsp;</span></p>
How Dynamic Light Scattering Platforms Transform Molecular Research
Image submitted by dorawestgogo@gmail.com — all rights & responsibilities belong to the user.

disclaimer

Comments

https://newyorktimesnow.com/public/assets/images/user-avatar-s.jpg

0 comment

Write the first comment for this!